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Thursday (Jan 28) Lecture Outline
• Transverse dynamics and natural focusing
• Q&A
• Strong focusing and a FODO lattice

• Q&A
• Ming Xie analysis
• Q&A
• Numerical simulator – LUME-Genesis

• Q&A
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Transverse dynamics and natural focusing

3



Planar Undulator

4

• A previously assumed magnetic field does not satisfy ∇ " 𝑩 = 0!
• The vertical sinusoidal field that satisfies Maxwell's equation has the vector 

potential 𝐴! = − "!
#"
cos 𝑘$𝑧 cosh 𝑘$ 𝑦 that results in 𝐵% ≠ 0!

• Lorentz force (written as the second derivative with respect to 𝑧) results in:
• 𝑥!! = 𝑘"

#
$
cosh 𝑘"𝑦 sin 𝑘"𝑧 , which is a standard FEL equation (2.7) for 𝑦 ≈ 0

• 𝑦!! + 𝑘"
#!

$! cos
% 𝑘"𝑧

&'() %*"+
% = −𝑝,𝑘"

#
$ sinh 𝑘"𝑦 cos 𝑘"𝑧 ≈ 0

According to S.Y. Lee Accelerator Physics, 4th ed, chapter 4.III.2

&𝜆!

𝑩 = 𝐵"+𝒚 sin 𝑘!𝑧

+𝒚

2𝒛 𝑩 = 𝐵"+𝒚 sin 𝑘!𝑧 cosh 𝑘!𝑦
+𝐵"2𝒛 cos 𝑘!𝑧 sinh 𝑘!𝑦



Planar Undulator
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• The nonlinear magnetic field can be neglected since 𝑘$𝑦 ≪ 1:
• 𝑦!! + 𝑘"%

#!

$! cos
% 𝑘"𝑧 𝑦 = 0

• Many FEL codes assume that dynamics is averaged over the undulator period:
• 𝑦!! = − 𝑘"%

#!

$! cos
% 𝑘"𝑧

"
𝑦 = −𝑘"%

#!

%$! 𝑦, which correspond to “natural focusing” of the 

undulator and the Hill’s equation 𝑦!! + 𝐾-𝑦 = 0, with the focusing function 𝐾- = 𝑘"%
#!

%$!

• The helical undulator has 𝐾! = 𝐾9 =
:
;𝐾<

&𝜆!

𝑩 = 𝐵"+𝒚 sin 𝑘!𝑧

+𝒚

2𝒛 𝑩 = 𝐵"+𝒚 sin 𝑘!𝑧 cosh 𝑘!𝑦
+𝐵"2𝒛 cos 𝑘!𝑧 sinh 𝑘!𝑦



Matrix transformation

• Solution of the Hill’s equation for the planar undulator is

𝑦
𝑦= %→%?@

=
cos

𝐾
2𝛾
𝑘$𝐿

sin 𝐾
2𝛾
𝑘$𝐿

𝐾
2𝛾
𝑘$

−
𝐾
2𝛾
𝑘$ sin

𝐾
2𝛾
𝑘$𝐿 cos

𝐾
2𝛾
𝑘$𝐿

𝑦
𝑦= %
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Matrix transformation

• Solution of the Hill’s equation for the planar undulator is

𝑦
𝑦= %→%?@

≈
1 −

𝐾;

4𝛾;
𝑘$;𝐿; 𝐿

−
𝐾;

2𝛾;
𝑘$;𝐿 1 −

𝐾;

4𝛾;
𝑘$;𝐿;

𝑦
𝑦= %

• This matrix transformation corresponds to a thick lens of the thickness 𝐿 and the 
focal length 𝑓 = ;A#

B##"#@
= CD;E[G#]

@[G]
for MaRIE-like x-ray FEL;

• The natural focusing is not sufficient for controlling transverse beam dynamics in 
FELs.
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Strong focusing and FODO lattice
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Focusing in Quadrupole
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𝑩 = 𝐵: 𝑦 <𝒙 + 𝑥 <𝒚 , where 𝐵: =
I"$
I!

J
G

used by Genesis

in order to calculate the focusing strength: 𝑘 𝑚K; = 0.299
"%

&
'

L MNO
with a sign-convention 𝑘 > 0 for horizontal focusing (‘QUADF’);

𝑥
𝑥= %→%?P

= cos 𝑘𝑙 QRS #P
#

− 𝑘 sin 𝑘𝑙 cos 𝑘𝑙

𝑥
𝑥= %

, focusing plane

𝑦
𝑦= %→%?P

= cosh 𝑘𝑙 QRST #P
#

𝑘 sinh 𝑘𝑙 cosh 𝑘𝑙

𝑦
𝑦= %

, defocusing plane

+𝒚

+𝒙

In the limit of 𝑘𝑙 ≪ 1, a thin quadrupole represents a thick lens
of the length 𝑙 and the focal length 𝑓 = 𝑘𝑙 K:. 



FODO lattice – focusing in both planes

100.5F                           O                                D                                O                           0.5F



FODO lattice in thin lens approximation

• A single FODO cell in matrix notations for 𝑥 coordinate is
𝑥
𝑥= %→%?@(

=
1 0

−
1
2𝑓

1
1

𝐿V
2

0 1

1 0
1
𝑓

1
1

𝐿V
2

0 1

1 0

−
1
2𝑓

1
𝑥
𝑥= %

that simplifies to 

𝑥
𝑥= %→%?@()**

=
1 −

𝐿V;

8𝑓;
𝐿V 1 +

𝐿V
4𝑓

−
𝐿V
4𝑓;

1 −
𝐿V
4𝑓

1 −
𝐿V;

8𝑓;

= 𝑈J 𝑒WX( 0
0 𝑒KWX(

𝑈 𝑥
𝑥= %

• The matrix transformation for 𝑦 coordinate requires 𝑓 → −𝑓 in the Eq. above;

• Phase advance is related to the transfer matrix by sinX(
;
= @(

Y Z
, which results in a 

real phase and a stable solution if 𝑓 > 𝐿V/4.
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FODO lattice in thin lens approximation

12

𝛽#$% =
1 + sin𝜙&2
sin𝜙&

𝐿&

𝛽#'( =
1 − sin𝜙&2
sin𝜙&

𝐿&

�̅� =
5 + cos𝜙&
6 sin𝜙&

𝐿&

The minimum possible average �̅�dRS gives us 𝜙VNPP = 𝜋 − arctan 2 6 ≈ 101e



Beta function study for MaRIE-like x-ray FEL
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Courant-Snyder Parametrization

• The most general form for matrix 𝑀fghg with unit modulus can be parametrized 
as

𝑀fghg =
cos𝜙V + 𝛼 sin𝜙V 𝛽 sin𝜙V

−𝛾 sin𝜙V cos𝜙V − 𝛼 sin𝜙V
= 𝐈 cos𝜙V + 𝐉 sin𝜙V ,

where 𝛼, 𝛽 and 𝛾 are Courant-Snyder parameters of the periodic solution, 𝜙V is the 
phase advance, 𝐈 is the unit matrix, and 

𝐉 = 𝛼 𝛽
−𝛾 −𝛼 , with Tr 𝐉 = 0, 𝐉; = −𝐈 or 𝛽𝛾 = 1 + 𝛼;

• One can thus solve for FODO matched beam parameters;
• Using the property of matrix , we obtain the De Moivere’s theorem:

𝑀i = 𝐈 cos 𝑛𝜙V + 𝐉 sin 𝑛𝜙V and     𝑀K: = 𝐈 cos𝜙V − 𝐉 sin𝜙V
that describe an oscillation if the beam parameters are not FODO matched.
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Genesis Description

FODOlattice.ipynb Input parameters Derived parameters
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http://genesis.web.psi.ch/Manual/parameter_focusing.html
http://genesis.web.psi.ch/Manual/parameter_undulator.html
http://genesis.web.psi.ch/Manual/parameter_beam.html

http://genesis.web.psi.ch/Manual/parameter_focusing.html
http://genesis.web.psi.ch/Manual/parameter_undulator.html
http://genesis.web.psi.ch/Manual/parameter_beam.html


Horizontal FODO in a thick lens approximation

• The phase advance is now smaller;
• The maximum of the beta function is 

now greater. 

16



Vertical FODO

Without “natural focusing” With “natural focusing”
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Betatron Envelope Equation

• The focusing function 𝐾 𝑠 is real and hence the amplitude and phase functions 
satisfy 𝑤== + 𝐾 𝑤 − :

j+ = 0, and 𝜓= = :
j#, where the normalization is chosen 

such that 𝑤; is exactly the Courant-Snyder 𝛽-function and the Courant-Snyder 
function 𝛼 = − k,

; = −𝑤 𝑤=.

• We want to use the numerical formalism in order to calculate the 𝛽-function in 
the FODO cell instead of a single point value obtained by the matrix formalism;

• We then use the numerical formalism in order to evaluate the average 𝛽-function 
in the FODO cell and compare this value to arithmetic average between max and 
min values of the 𝛽-function:

�̅� = k'-.?k'/0
;

vs   �̅� = :
@(
∫e
@( 𝛽 𝑠 𝑑𝑠

18



Betatron envelope equation results

BetatronEnvelopeEquation.ipynb
• The thick lens solution has smooth 

turns inside the quadrupoles instead 
of sharp ones in the thin lens 
approximation;

• The vertical solution is focused more 
due to the natural focusing in the 
undulator; 
• Horizontal solution:

• The maximum x beta function 17.018 m. 
• Phase advance is 0.27653 rad. 
• The minimum x beta function 12.949 m.

• Vertical solution:
• The maximum y beta function 12.755 m.
• Phase advance is 0. 28074 rad. 
• The minimum y beta function 16.763 m.

19

�̅�% = 14.898 m and �̅�) = 14.675m are both less than 
the arithmetically average �̅�-function.



�̅�-function matching

𝜷-function mismatch �̅�! − �̅�9
;

• The matched solution requires a 
focusing quad, which defocuses in the 
vertical plane, to be stronger than a 
defocusing quad in order to 
compensate for the natural focusing 
of the undulator:
• QUADF  = 30.061 T/m;
• QUADD = -30 T/m;

20
𝑘𝑓

𝑘𝑑



�̅�-function matching

𝜷-function mismatch �̅�! − �̅�9
; • Horizontal solution:

• The phase advance is 0.27892 rad. 
• Average x beta function is 14.771 m. 
• The maximum x beta function is 16.876 m.
• The minimum x beta function is 12.837 m.

• Vertical solution:
• The phase advance is 0.27892 rad. 
• Average y beta function is 14.771 m.
• The maximum y beta function is 16.874 m.
• The minimum y beta function is 12.836 m.

• The �̅�-functions are matched but the 
maximum and minimum are not the same 
due to the natural focusing in one plane 
modifying the beta function evolution.

21
𝑘𝑓
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Ming Xie analysis of 3D FELs
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Ming Xie solution
• Ming Xie solution has been implemented 

in zfel.old_scripts.mingxie()

• Inputs keyword arguments: 
sigma_x # RMS beam size 
und_lambda # Undulator period (m) 
und_k # Undulator K 
current        # Beam current (A) 
gamma        # Relativistic gamma 
norm_emit # Normalized emittance (m-rad)
sigma_E # RMS energy spread (eV) 

• Output as dictionary: 
gain_length # Gain length (m
saturation_length # Saturation length (m) 
saturation_power # Saturation power (W) 
fel_wavelength # FEL wavelength (m) 
pierce_parameter # Pierce parameter (rho)

• My Mathematica implementation is 
presented here. 23



Ming Xie evaluation – single value
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{'gain_length': 3.21,
'saturation_length': 54.91,
'saturation_power’: 9.916e9,
'fel_wavelength': 3e-11,
'pierce_parameter': 4.125e-4}



Ming Xie evaluation – scan

25

• We can use Ming Xie predictions in order to 
find the optimum beam size for MaRIE-like 
x-ray FEL;

• We can see that, although �̅� = 10 m results 
in a shorter saturation length (higher gain), 
the highest saturated power is reached at 
�̅� = 15 𝑚;

• Picking up �̅� provides guidance on the 
FODO lattice design, which we discussed in 
the previous section;

• Please recall the value of the previously 
discussed �̅� values; they were closer to the 
power maximum than to the gain 
maximum, which is inversely related to the 
saturation length.



Ming Xie evaluation – scan
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• The saturation length measured in the number of gain length is less than predicted by 1D theory;
• The saturated power is less than 50% of that predicted by 1D theory;
• These degradations are due to the 3D effects.



ZFEL execution – 2 variable scan

27

• �̅� = 15 𝑚 case is studied here;
• This analysis shows that XFEL performance is highly sensitive to emittance and energy spread;
• The studied design here is emittance dominated and one would require a low emittance beam!



3D Numerical simulator – LUME-Genesis
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Genesis v2

• We will focus on Genesis v2, which is a stable version of a very popular FEL 
modeling code (http://genesis.web.psi.ch/) written in Fortran;

• It uses undulator averaged approximation and thus expresses all the distances in 
the units of undulator period XLAMD;

• Electromagnetic fields are expressed on the Cartesian grid;
• Electrons are represented  by an equal number of macroparticles arranged in 

slices, one resonant wavelength XLAMDS long;
• Slices are ZSEP wavelength apart;
• LUME-genesis is python interface to setup, run and analyze Genesis v2 

simulations;
• Genesis v4, rewritten in C, is under active development now 

(https://github.com/svenreiche/Genesis-1.3-Version4); 29

http://genesis.web.psi.ch/
https://github.com/svenreiche/Genesis-1.3-Version4


Configuring Genesis executable
• Genesis v2 is written in Fortran and does not support dynamic array allocations;
• Maximum array sizes have to be provided prior to compilation of an executable;
• ‘genesis.def’ file contains these variables https://github.com/slaclab/Genesis-1.3-

Version2/blob/master/genesis.def , which is a modification of the original Genesis source code.

30

https://github.com/slaclab/Genesis-1.3-Version2/blob/master/genesis.def


Genesis v2: Input file http://genesis.web.psi.ch/Manual/files1.html

• Concise description of the input parameters could be found in 
https://github.com/slaclab/Genesis-1.3-Version2/blob/master/input.f#L1272 as well as 
https://github.com/ocelot-collab/ocelot/blob/master/ocelot/adaptors/genesis.py#L202

• Genesis generates ‘template.in’ if ran without an input file provided!

31

http://genesis.web.psi.ch/Manual/files1.html
https://github.com/slaclab/Genesis-1.3-Version2/blob/master/input.f
https://github.com/ocelot-collab/ocelot/blob/master/ocelot/adaptors/genesis.py


Genesis v2: MaRIE input file
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Particle loading – ‘quiet start’

The first 10000 points in the same sequence. These 10000 
comprise the first 1000, with 9000 more points.

The first 10000 points in a sequence of uniformly distributed 
pseudorandom numbers. Regions of higher and lower 
density are evident.

33
Genesis uses Hammersley sequence for quiet start instead of pseudorandom numbers that introduces bunching!
https://en.wikipedia.org/wiki/Low-discrepancy_sequence#Hammersley_set

https://en.wikipedia.org/wiki/Low-discrepancy_sequence


Results of the no SASE simulation
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Electron beam size is FODO matched but not �̅� matched. Generated power is less than expected from Ming Xie. Why?



Power optimization
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• The steady state simulation keeps the 
radiation wavelength fixed in order to 
determine the size of the slice;

• This type of simulation assumes no 
slippage of the radiation with respect 
to the electrons;

• Any electrons that fall behind get 
reintroduced into the slice assuming 
that an identical slice exists ahead of 
the simulated slice;

• The expected wavelength was 
2.9337e-11 m but we have found 
2.9384e-11 m, which is 0.0016 relative 
shift.



Gain optimization
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We look at the power growth along the undulator and see oscillations at the start;
We then estimate the Gain coefficient at the several points along the undulator;
The gain peaks at the resonant wavelength and not where the power picked!



�̅�-function matching

37

�̅�-function matched solution produces a round beam in the undulator but not necessary the highest power!
Keeping a round beam may allow a smaller undulator gap and a stronger undulator parameter;
Our solution saturates at a longer undulator distance than Ming Xie predicted.



Gain guiding of the optical mode

38



Genesis v2: Lattice file http://genesis.web.psi.ch/Manual/files6.html
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outmagfile = ‘file_name’
delz = 1
version       = 1.0

http://genesis.web.psi.ch/Manual/files6.html


Genesis v2: Lattice file http://genesis.web.psi.ch/Manual/files6.html

40

outmagfile = ‘file_name’
delz = 5
version       = 1.0

http://genesis.web.psi.ch/Manual/files6.html


Genesis v2: Lattice file http://genesis.web.psi.ch/Manual/files6.html

• Header of the file:
• ? VERSION=1.0

? UNITLENGTH=‘xx’

• Element line:
• ‘XX’ ‘strength’ ‘length’ ‘offset’

• A two-character string, ‘XX’, indicating the type of structure. Following types are 
supported:
• AW - Main magnetic field
• AD - Drift section
• QF - Quadrupole strength
• QX - Quadrupole offset in x; QY - Quadrupole offset in y
• SL - Solenoid strength
• CX - Corrector strength in x; CY - Corrector strength in y

41

http://genesis.web.psi.ch/Manual/files6.html


Genesis v2: Lattice file simplified

• `maginfile=‘marie.lat’` supersedes the input file values yet it also depends on 
them:

42



Genesis Lattice output
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Phase synchronism in drifts

• We have to fill in the gaps in order to 
maintain phase synchronism 
controlled by appropriate phase 
shifters in actual FELs; 

• Sometimes detuning the phase shifter 
can be used to suppress the 
fundamental harmonic.

44


